2,373 research outputs found

    Chronic cough and esomeprazole: A double-blind placebo-controlled parallel study

    Get PDF
    Background and objective: Gastro-oesophageal reflux has been implicated in the pathogenesis of chronic cough. Guidelines on management suggest a therapeutic trial of anti-reflux medication. Esomeprazole is a proton pump inhibitor licensed for the long-term treatment of acid reflux in adults and we compared the effects of esomeprazole and placebo on patients with chronic cough. Methods: This was a prospective, single-centre, randomized, double-blind, placebo-controlled, parallel group study conducted over 8 weeks. Fifty adult non-smokers with chronic cough and normal spirometry were randomized. Patients completed cough-related quality-of-life and symptom questionnaires and subjective scores of cough frequency and severity at the beginning and end of the study. They also kept a daily diary of symptom scores. Citric acid cough challenge and laryngoscopic examination were performed at baseline and the end of the study. The primary outcome was improvement in cough score. Results: There were no differences in cough scores in the placebo and treatment arms of the study although some significant improvements were noted when compared to baseline. In the cough diary scores there was a trend towards greater improvement in the treatment arm in patients with dyspepsia. Conclusions: Esomeprazole did not have a clinically important effect greater than placebo in patients with cough. It suggests a marked placebo effect in the treatment of cough. There is paucity of evidence on which to base the treatment of reflux-associated cough. We demonstrate that acid suppressive therapy does not lead to a significant clinical effect in these patients. There may be some improvement in those with coexisting dyspeptic symptoms and therapy should be restricted to this group. © 2011 Asian Pacific Society of Respirology

    High-resolution Spectroscopy of Extremely Metal-poor Stars in the Least Evolved Galaxies: Leo IV

    Get PDF
    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = –3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the α elements Mg, Ca, and Ti by ~0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Boötes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction (≳10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = –3.0

    A Search for Stars of Very Low Metal Abundance. VI. Detailed Abundances of 313 Metal-Poor Stars

    Full text link
    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10-year observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coude Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by approx. 0.25 dex for red giants and approx. 0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] < -3.5, 84 stars with [Fe/H] < -3.0, and 210 stars with [Fe/H] < -2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] < -2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.Comment: Accepted for publication in the Astronomical Journal. 60 pages, 59 figures, 18 tables. Machine-readable versions of the long tables can be found in the ancillary data file

    The Morphologies of the Small Magellanic Cloud

    Full text link
    We compare the distribution of stars of different spectral types, and hence mean age, within the central SMC and find that the asymmetric structures are almost exclusively composed of young main sequence stars. Because of the relative lack of older stars in these features, and the extremely regular distribution of red giant and clump stars in the SMC central body, we conclude that tides alone are not responsible for the irregular appearance of the central SMC. The dominant physical mechanism in determining the current-day appearance of the SMC must be star formation triggered by a hydrodynamic interaction between gaseous components. These results extend the results of population studies (cf. Gardiner and Hatzidimitriou) inward in radius and also confirm the suggestion of the spheroidal nature of the central SMC based on kinematic arguments (Dopita et al; Hardy, Suntzeff & Azzopardi). Finally, we find no evidence in the underlying older stellar population for a ``bar'' or ``outer arm'', again supporting our classification of the central SMC as a spheroidal body with highly irregular recent star formation.Comment: 8 pages, accepted for publication in ApJ Letters (higher quality figures available at http://ngala.as.arizona.edu/dennis/mcsurvey.html

    CTQ 839: Candidate for the Smallest Projected Separation Binary Quasar

    Get PDF
    We report the discovery of the new double quasar CTQ 839. This B = 18.3, radio quiet quasar pair is separated by 2.1" in BRIH filters with magnitude differences of delta m_B = 2.5, delta m_R = delta m_I = 1.9, and delta m_H = 2.3. Spectral observations reveal both components to be z = 2.24 quasars, with relative redshifts that agree at the 100 km/s level, but exhibit pronounced differences in the equivalent widths of related emission features, as well as an enhancement of blue continuum flux in the brighter component longward of the Ly alpha emission feature. In general, similar redshift double quasars can be the result of a physical binary pair, or a single quasar multiply imaged by gravitational lensing. Empirical PSF subtraction of R and H band images of CTQ 839 reveal no indication of a lensing galaxy, and place a detection limit of R = 22.5 and H = 17.4 for a third component in the system. For an Einstein-de Sitter cosmology and SIS model, the R band detection limit constrains the characteristics of any lensing galaxy to z_lens >= 1 with a corresponding luminosity of L >~ 5 L_*, while an analysis based on the redshift probability distribution for the lensing galaxy argues against the existence of a z_lens >~ 1 lens at the 2 sigma level. A similar analysis for a Lambda dominated cosmology, however, does not significantly constrain the existence of any lensing galaxy. The broadband flux differences, spectral dissimilarities, and failure to detect a lensing galaxy make the lensing hypothesis for CTQ 839 unlikely. The similar redshifts of the two components would then argue for a physical quasar binary. At a projected separation of 8.3/h kpc (Omega_matter = 1), CTQ 839 would be the smallest projected separation binary quasar currently known.Comment: Latex, 23 pages including 5 ps figures; accepted for publication in A
    • …
    corecore